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Abstract 

In 1999, Stolz and Adams [Phys. Fluids 11 (1999)] unveiled a subgrid-scale model for LES 

based upon approximately inverting (defiltering) the spatial grid-filter operator and termed 

.the approximate deconvolution model (ADM). Subsequently, the utility and accuracy of the 

ADM were demonstrated in a postenon analyses of flows as diverse as incompressible plane- 

channel flow and supersonic compression-ramp flow. In a prelude to the current paper, a 

parameterized temporal ADM (TADM) was developed and demonstrated in both a priori 

and a postemon analyses for forced, viscous Burger's flow. The development of a time- 

filtered variant of the ADM was motivated-prirpitrily by the desire for a umfymg theoretical 

and computational cont t to  encompass' direct numerical simulation (DNS), large-eddy 

simulation (LES), and Reynolds averaged Navier-Stokes simulation (RANS). The resultant 

methodology was termed tempord LES (TLES). To permit exploration of the parameter 

space, however, previous analyses of the TADM were restricted to Burger's flow, and it has 

remained to demonstrate the TADM and TLES methodology for three-dimensional flow. 

For several reasons, plane-channel flow presents an ideal test case for the TADM. Among 

these reasons, channel flow is anisotropic, ds itself to highly efficient and accurate 

spectral numerical methods. Moreover, ch ow has been investigated extensively by 

DNS, and a highly accurate data base of . [Phys. Fluids 11 (1999)] exists. In the 

present paper, we develop a fully anisotropic TADM model and demonstrate its utility in 

simulating incompressible plane-channel flow at nominal values of Re,  = 180 and Re, = 590 

by the TLES method. The TADM model is shown to perform nearly as well as the ADM at 

equivalent resolution, thereby establishing TLES as a viable alternative to LES. Moreover, 

as the current model is suboptimal is some respects, there is considerable room to  improve 

TLES. 

, 
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I. INTRODUCTION 

While the formal linkage of the equations governing large-eddy simulation (LES) and 

Reynolds-averaged Navier-Stokes simulation (RANS) has been well e~tablished,~J" it is of 

interest to investigate whether this linkage can be extended practically by developing fil- 

tering and averaging procedures that yield mutually consistent solution fields among DNS, 

LES, and RAM. A possible unifying context for these methodologies is afforded by filter 

theory. However, the linkage between DNS, LES, and RANS may be more natural within 

the context of time-domain filtering rather than the traditional spatial filtering commonly 

used in LES. Accordingly, the present paper attempts to establish temporal large-eddy sim- 

ulation (TLES) as a practical methodology for solving the temporally filtered Navier-Stokes 

(TFNS) equations using causal time-domain filters. TLES lies at the nexus of three rela- 

tively recent developments in subgrid-scale (SGS) modeling for LES: dynamical modeling, 

approximate deconvolution methods, and time-domain filtering. Each is discussed in some 

detail below. 

A. Dynamic Modeling 

LES dates to the early 1960's, when it was first exploited for weather modeling. Summa- 

rizing Popez2, LES consists of four conceptual steps: 1) decomposition of the field variables 

into resolved and unresolved scales of motion, denoted here by G ( t ,  5) and C(t ,  z), respec- 

tively; 2) derivation of the equations of motion for the resolved scales; 3) closure of the 

governing equations by modeling the residual-stress tensor; and 4) numerical solution of the 

closed governing equations. Only in the last step does discretization arise. 

Steps 1) and 2) are accomplished by subjecting the flow-field variables and the Navier- 

Stokes Equations (NSE), respectively, to the same low-pass filter, conventionally termed the 

grid filter. The terminology is unfortunate, because the filter is applied prior to discretiza- 

tion; hence, we will refer instead to the primary filter. Filtering the nonlinear terms of 

the NSE generates residual stresses, w h c h  require modeling in step 3. The more common 

term for residual stress is subgrid-scale (SGS) stress, but for the reason stated previously, 

this too is misleading. More correctly, the residual stress is alternately referred to as the 

subfilter-scale (SFS) stress, a distinction made by G ~ l l b r a n d ' ~ .  In conventional LES, the 
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primary filter is implicit; that is, it is conceptual and does not play an active role in the 

solution procedure (Step 4). 

The original residual-stress models were of eddy-diffusivity type, of which the Smagorin- 

sky model is the most well known. Eddy-diffusivity models suffer from a number of defects, 

among them the tendencies to be overly dissipative and to correlate poorly with exact resid- 

ual stresses. A more subtle shortcoming of initial approaches to LES was that  implicit 

filtering obscured the relationship between the filter and the model, so much so that, until 

relatively recently, it  was widely accepted within the LES community that the choice of filter 

and the model were completely independent2’,26. 

In an effort to overcome the shortcomings of conventional LES, Germano and coworkers8 

proposed the concept of dynamic modeling, which re-invigorated the LES community. Dy- 

namic modeling involves two filters: the primary (“grid”) filter, which is implicit, and the 

secondary (“test”) filter, which is explicit. The Germano identity links the residual-stress 

tensor with two other tensors, one of which the resolved turbulent stress tensor, C,, is 

computable by secondary filtering of the resolved velocity fields. The quantity C, can be 

considered a measure of ill-resolution, from which a locabzed dissipation parameter is de- 

rived. Thus, dynamic models are local in time and space in that dissipation is applied only 

when and where needed. Perhaps the greatest contributions of dynamic modeling are ex- 

plicit filtering and local dissipation; however, dynamic models suffer some theoretical and 

practical shortcomings. 

The advent of explicit filtering resulted in a careful examination of the relation- 

ship between the filter(s) and the model from several points of view: e~perimental’~,  

computational2*, and a n a l y t i ~ a l ~ , ~ ~ .  All recent investigations concur that there is strong 

coupling between the filter and the exact residual stress. Far from being independent, the 

model and filter are intricately related to the point that there is one-t+one correspondence 

between the filter and the r n ~ d e l ~ * ? ~ ~ .  A secondary motivation for the current work is to 

render that dependence explicit. 

B. Approximate Deconvolution Methods 

Conventional LES has relied upon models that are phenomenologically based; that is, 

they are derived primarily on the basis of physical considerations. Recent recognition of the 
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tight coupling between filter and model has  spurred attempts to approximate the residual 

stress mathematically rather than to model it. Taylor-series analyses (Leonard”, Bardina4, 

Pruett et al.25) fall into this category, as do more recent deconvolution methods (Shah and 

FerzigePg, Geurts”, Domaradzki and Saiki7, and St.olz and Adams3’). A lucid review of 

deconvolution methods can be found in Adams and Stolz’. 

Deconvolution methods are based upon deconvolving (defiltering) the filtered flow fields 

(provided that the filter is invertible). Interestingly, the method enjoys its utility because 

it  is approximate, not despite being approximate. In LES, one wishes to recover accurately 

only the resolved scales, which deconvolution enhances, while appropriately dissipating the 

energy of the unresolved scales, which the ADA4 met.hod also accomplishes by secondary reg- 

u2a~%ation. The (spatial) approximate deconvolution model (ADM) of Stolz and Adams3I 

has performed remarkably well in a posterion; analyses of flows as  diverse as incompressible 

plane-channel flow3’ and supersonic compression-ramp flow33. Moreover, the dissipation 

provided by the filter renders the method applicable for shock-capturing in high-speed com- 

pressible flows (Adams’). 

C. Time-Domain Filtering 

As mentioned previously, LES has relied historically on spatial filtering to separate re- 

solved from unresolved scales. However, at least in concept, time-domain filtering offers 

a number of advantages, which were outlined previously in Dakhoul and Bedford‘ and in 

PruettZ3. For completeness, we compile some of the advantages below. 

1. Time-domain filters naturally commute with differentiation operators; commutation 

error, however, is problematic for spatial filters, particularly on finite  domain^^>^^. 

2. Spatial filtering is problematic for highly stretched meshes or unstructured grids; tem- 

poral filters, on the other hand, operate independently of spatial discretizations. 

3. LES based upon temporal filtering (=TLES) permits consistent comparison with re- 

sults from most physical (e.g., wind-tunnel) experiments, in which data are typically 

recorded and processed in the time domain. 

4. Time domain filters are compatible with flow manipulation by localized (point) 

sources‘. 
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5. As will be shown, the reformulation of LES for time-domain filters (=TLES), yields 

a parameterized system of governing equations for which the temporal filter-width A 
appears as an explicit parameter. 

6. Last and perhaps most important, time-domain filtering provides a natural and uni- 

fying context to encompass DNS, LES, and RANS methodologies. 

Time-domain filtering for LES also presents some conceptual and practical disadvantages as 

wel!, wkch are deemed relatively  or m d  are &iscussed in cmtext. 

Surprisingly little effort has been expended toward the exploitation of time-domain filter- 

ing for LES. Dakhoul and Bedford‘ a.nd Aldama3 each considered mixed space-time filtering 

for LES. In recent years, attention has been given to pure time-domain filtering, and both 

Eulerian and Lagrangian temporal filters have been considered in lieu of spatial filters for 

LES. In 1996, P r ~ e t t ~ ~  applied Eulerian time-domain filtering for a priori analysis of axisym- 

metric jet flow, and in 1999, Meneveau et al.” exploited a Lagrangian time-domain filter 

for LES and demonstrated the time-filtered method for LES of isotropic turbulence. In a 

prelude to the current paperz7, a parameterized temporal ADM (TADM) was developed and 

demonstrated in both a priori and a posteriori analyses for forced, viscous Burger’s flow. 

The analyses were necessarily restricted to Burger’s flow so that the parameter space could 

be fully explored. However, for the spatially one-dimensional problem, LES results agreed 

very well with temporally filtered DNS results, suggesting that TADM methodology should 

be further pursued, which is the intent of this paper. 

In the present paper, we develop an anisotropic TADM model and demonstrate the model 

in large-eddy simulation of incompressible plane channel flow at nominal Re, = 180 and 

590. In the next section, causal filtering is discussed, a candidate filter is presented, and a 

differential form of the filter is derived. In Section 111, the temporally filtered Navier-Stokes 

equations are presented. Section IV is devoted to nomenclature. Deconvolution methods are 

discussed in general in Section V, and a. TADM model is developed. Results of a reference 

DNS of channel flow are presented in Section VI. Section VI1 presents results of TLES with 

the T-4DM and compares these results to results of the reference DNS. Relevant discussion 

follows in Section VIII. The paper closes with few coiicluding remarks and suggestions for 

future study in Section IX. 



11. CAUSAL FILTERING 

Time-domain filters are classified as causal or a c a ~ s a l , ~ ~  depending upon whether they 

are applicable to real-time or a postenori data processing, respectively. The interest here 

lies in real-time applications to TLES for which only causal filtering is appropriate. 

Let f ( t )  be a continuous function of time t. A causal linear filter is readily constructed 

by the integrd operator 
t 

f(t; A) = 1 G(T - t ;  A)f(~)d ' r ,  (1) 
-m 

where G is a parameterized filter kernel, and the parameter A is the termed the filter width. 

(The convention of using semicolons to separate parameters from independent variables in 

argument lists is adopted here.) 

The following properties of admissible kernels were discussed in27; but are repeated here 

for completeness 

G(t;A)  i g  (i) , 

where g is any integrable function such that 

g( t )  2 0, g( t )d t  = 1 and g(0)  = 1 

The non-negativity and normalization constraints in Q. (3) imply that 

lim g ( t )  = 0 ,  
t--m 

and suffice for G to approach a Dirac delta function as  its parameter A -+ 0; that is, 

rt 
lim f ( t ;  A) = 
A-0 

I ~ ~ ~ ,  two examples of causal filters 

lim G(T - t ;  A ) f ( ' r ) d ~  
A 4  L, 

satisfying the constraints above were presented: a 

Heaviside filter and an exponential filter. Here, we restrict attention to the exponential 

filter (for reasons soon to be demonstrated). For the exponential kernel 

exp (t lA> 
A '  

g ( t )  = exp(t) -+ G(t; A )  = 



and the resulting integral operator in Eq. (1) is 

A drawback of the integral formulation just presented is the need to retain the long-time 

history of the solution field. However, by considering instea.d the differential form of the filter 

operator, storage requirements are reduced significantly, subject to  the intrinsic storage needs 

of the numerical time-advancement scheme itself (for example, low-stora.ge Runge-Kutta) . 

By using Leibniz' rule to  diferent5at.e Eq. (7) with respect, to time, ti12 diflereztizl f o m  of 

the exponential filter is obtained, namely 

The effect of a causal filter is most apparent from its transfer function K(R),  which 

quantifies its amplitude and phase effects in Fourier space as a function of dimensionless 

frequency i"2 = w A ,  where w is the (dimensional) circular frequency. The transfer function 

of the continuous exponential filter is shown in Fig. 1. When causal filtering is applied to 

a temporally discretized problem with a time increment of At, the action of the filter is 

naturally parameterized by the filter-width ratio T defined as 

A 
At 

T = -_ 

For the exponential filter, the parameterized transfer function is 

1 
1 + LrwAt 

H(wAt;r )  = 

(9) 

Figure 2 presents the modulus of the transfer function of the exponential filter for selected 

values of the filter-width ratio. Note that w A t  = T corresponds to a sampling rate at the 

Nyquist frequency, and that filtering at s2 > 7i is disallowed because it results in unacceptable 

aliasing error. Note also that T = 0 yields H(wAt ;O)  = 1, which eliminates the filter. 

The filter-width ratio, T ,  is the only parameter of the differential filter. In general, 

the larger the value of T ,  the more dissipative the filter. (In this context, a "dissipative" 

low-pass filter is one with significant and broad-band attenuation of high-frequency Fourier 

harmonics.) The differential equation remains viable for all values of filter-width ratio (0 < 
T ) .  However, whenever r zz 0, the evolution equation becomes stiff, and small time steps are 
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necessary for stability of the numerical integration scheme. The action of the parameterized 

differential filter on a spectrally rich time signal can be found in Fig. 5 of Reference27. 

Normally, when a continuous low-pass filter is discretized, the transfer function of the 

discrete filter deviates substantially from that of the continuous prototype, particularly at 

high frequencies. This is not the case, however, when the continuous filter is expressed in 

differential form, and the differential form is integrated in time by a high-order numerical 

scheme. For example, Fig. 3 compares the transfer function of the continuous exponential 

filter for T = 1 with that of the discrete filter obtained by solving Q. 8 by the  c l a s s id  

fourth-order Runge-Kutta method with a time-step At that exactly satisfies the Nyquist 

criterion at the highest frequency. The continuous and discrete transfer functions are nearly 

indistinguishable. Surprisingly, the agreement improves as the filter-width ratio r increases. 

Thus, for present purposes, it  suffices to  base subsequent analyses on the properties of the 

continuous differential filter. 

111. TEMPORALLY FILTERED NAVIER-STOKES EQUATIONS 

The application of a causal temporal filter (e.g., Eq. (1)) to the Navier-Stokes equations 

(NSE) leads to the temporally filtered Navier-Stokes Equations (TFNSE), namely 

where uj is the velocity, p is the pressure, and Re is the Reynolds number. An overbar 

denotes a quantity that has been subjected to filtering by the primary filter, which is causal, 

and &.j represents the e x x t  temporal residual-stress tensor defined as 

Provided that filtering and differentiation operations commute, the TFNS equations are 

formally identical to the spatially filtered Navier-Stokes equations. As pointed out previously 

by P r ~ e t t , ~ ~  commutativity is natural for temporal filters but remains problematic for spatia.1 

In general, for spatial or temporal primary filters, the residual stress depends 

strongly upon the filter, particularly upon its filter width and order property, which influence 

both the magnitude and the distribution of the residual stress. Because the exact residual 
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stress depends upon the filter width, it is sometimes helpful to explicitly denote by Rj = 

Xj(A). In particular, it can be shown by Taylor-series analysis (e.g.,25), that  Ej is of 

leading order A2 for first- or second-order primary filters. 

The invariance properties of the TFNSE are discussed in detail in Section IIIa of 

Referencez7. 

N. NOMENCLATURE 

Because TLES represents a departure from the norm, it is advisable to define all terms 

and quantities precisely in the current context, which is the purpose of this section. To those 

for whom the discussion may seem pedantic, we apologize. 

A. Ensemble Mean and Long-Time Average 

Let E{%} denote the ensemble mean (or the ezpected value) of the velocity component 

u,. Accordingly, the Reynolds decomposition of the velocity is given by 

which partitions the velocity into timeindependent and time-dependent contributions de- 

noted the mean and fluctuation, respectively. Turbulence modeling efforts focus on the 

Reynolds-stress tensor T~~ = E{uiuji}, which, by virtue of the Reynolds decomposition, is 

given by 

Tij = E { ( U i  - E { U i } ) ( U j  - E { U j } ) }  (15) 

By the ergodic hypothesis, for a statistically steady (stationary) flow, the ensemble mean 

of a turbulent quantity is equivalent to its long-time average, denoted hereafter by angle 

brackets. For stationary flow, for example, < ui >= E{ui}. In principle, the long-time 

average of a quantity is a constant computed by averaging over infinite time. In  practice, 

it suffices to average over many integral time scales ( T ) .  If the flow is homogeneous, the 

temporal interval necessary to compute the long-time average is reduced si,gnificantly by 

averaging also in homogeneous dimensions. As will be shown, channel flow is homogeneous 

in streamwise (5) and spanwise (y) extents. Consequently, in present. parlance, <> denobes 

either <>t or <>t,z,y, where the time interval in either case is chosen sufficiently long to 
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yield an accurate mean. In contrast, <>,, denotes instantaneous averages over homogenous 

planes. 

For channel flow, all field variables are either statistically symmetric or antisymmetric 

about the mid-plane. Due to the random influences of initial data, simulations produce 

slight asymmetries. However, because upper and lower channel halves represent different 

realizations, it  is appropriate to average symmetrically about the channel mid-plane. Sym- 

metric averages further reduce the time interval necessary to acquire an accurate mean and 

are exploited herein. 

Henceforth, we presume that the flow is fully turbulent and stationary, in which case the 

Reynolds stress is defined alternately as 

.where Eq. 17 exploits the properties that << a >>=< a >, < ca >= c < a >, and 

< a + b >=< a > + < b > for any timedependent fields a and b and time-independent field 
n 

B. Resolved and Sub-Filter Scales 

For TLES, a natural decomposition of the velocity field ui is given by 

where the first and second terms on the right-hand side of &. 18 are termed the resolved and 

sub-filter scale (SFS) velocities, respectively. (Because the TFNSE are continuous and have 

yet to be discretized, we prefer the terminology sub-filter scale of G ~ l l b r a n d ’ ~  rather than 

the conventional but somewhat misleading term sub-grid scale (SGS).) It is worth noting, 

that, in general, unlike < ui >, ‘1L, is time-dependent. 

In order to formally link RANS and TLES methodologies, we now wish t o  examine 

the relationship between the Reynolds stress (Eq. 17) and the (temporal) residual stress 

(Eq. 13). The reader is reminded that, unlike the Reynolds stress, the residual stress is a 

time-dependent function, parameterized by the filter width A. 
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In TLES the solution variables are the resolved velocities iii. Consequently, the exact 

Reynolds stress is unavailable from the solution; the analogous computable quantity is the 

resolved-scale Reynolds stress Fij defined as follows: 

7..  - < (iii- < iil > ) ( E j -  < 2Lj >) > 

= < siuj > - < ii; >< iij > 
2.7 - 

C. Exact TLES 

As a sort of thought experiment, we now consider exact TLES; that is, TLES conducted 

with an exact residual-stress model. In exact TLES, the Reynolds stress is exactly the sum 

of the resolved-scale Reynolds stress and the mean residual stress; i.e., 

raj = < u,uj > - < ui >< uj > 

= <w>-<<l><iij> 

= [< zli71j - iizuj >] + [< iiiiij > - < i& >< iij >] 

= < &j > +7lj 

Of the two contributions to the exact Reynolds stress, denoted above by bracketed terms, 

the first, the resolved-scale Reynolds stress, is computable from the solution, whereas, the 

second: the residual stress: must ultimately be modeled. For the moment, we presume the 

residual-stress model to be exact. Still, it may not be immediately clear why Eq. 21 is 

identical to Eq. 17. First, it is useful to note that Eq. 21 is exact in the limiting cases as 

4 -+ 0 and A ---t co. By virtue of Eq. 5, iii -+ ui and 21izLj -+ wuj as A -+ 0. Hence, in 

the limit of vanishing A, the mean residual stress (bracketed term 2 of the second line of 

Eq. 21) vanishes as the resolved-scale Reynolds stress (term 1 above) tends toward the exact 

Reynolds stress. On the other hand, it was shown in Reference27 that the residual stress 

tends asymptotically toward the Reynolds stress as A -+ 00; that is, lima,, I& = ri, for a 

stationary flow, this by virtue of the fact that f ( t ;  4) =< f ( t )  > for causal low-pass 

filters. Consequently, in the infinite limit, the first bracketed term in Eq. 21 tends toward 

<< u, >< uj >> - < >< uj >= 0; that is, the resolved-scale Reynolds stress vanishes. 

For finite A ,  the last line of Q. 21 is also identical to Eq. 17, for the reason thai,  in exact 

TLES, < iii >=< ui >, because low-pass temporal filtering preserves the mean. 

12 



For conventional (spatial) LES, it is customary to validate the results against filtered DNS 
results; that is, by a posteriori analysis. For spatial LES, it suffices to spatially filter the 

DNS results at instants in time and then average over relatively few time steps. In contrast, 

a posteriori analysis for TLES requires real-time or ex post facto temporal filtering of DNS 
data over many time steps. Thus, to conduct a posteriori analyses for TLES, one would 

be forced into DNS with the substantial computational overhead associated with real-time 

implementation of the SFS model or with the enormous storage overhead associated with 

storing most or d time steps. Fortunately (provided the SFS model is adequate), Eq. 21 

obviates the need for a posteriori analysis altogether, because it provides a mechanism by 

which to compare TLES results directly with DNS results without the need t o  filter the 

latter. Indeed, this is an advantage of TLES relative to spatial LES, became conventional 

LES provides no means for directly comparing LES and DNS or LES and eqeriment.  

To summarize, the situation is thus. In TLES, the Reynolds stress is partitioned into 

two parts: the resolved-scale Reynolds stress Tij, which can be computed from the  solution 

of the TFNSE, and the residual stress &,, which must be modeled. The exact partitioning 

depends on the temporal fdter width A. For vanishing filter width, all the Reynolds stress 

is contained in resolved scales, the residual stress vanishes identically, the TFNSE reduce to 

the NSE, and the simulation is equivalent to DNS. In the limit of infinite filter width, all the 

Reynolds stress is contained in sub-filter scales (i.e., in the residual stress), the resolved-scale 

Reynolds stress vanishes identically (because the field variables are time independent): the 

TFNSE reduce to the RANS equations (for stationary flow), and the simulation is equivalent 

to RANS, provided that the residual-stress model tends toward a Reynolds-stress model. In 

short, the  larger A, the greater the burden placed on the model Mij = &j, but also the greater 

the potential for grid coarsening. 

Finally, we consider the instantaneous turbulent kinetic energy, k ( t ) ,  defined here as 

(22) 

The analogous computable quantity for TLES is the resolved turbulent kinetic energy, E(t) 

< EiUi >z>y dr (23 1 
Also of interest is the residual turbulent kinetic 
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For exact TLES, the instantaneous sum of resolved and residual turbulent kinetic energies 

is (only) approximately k ( t ) .  That is, 

The time mean of the previous approximation, however, yields an exact equality; that is, 

k =< k ( t )  >=< L(t) > + < k ~ ( t )  >. 

V. DECUNVOLUTXON METHODS 

As suggested in the Introduction, deconvolution methods seek to approximate Rj pri- 

marily by mathematical means rather than to model Rij by physical considera,tions. In 

this section, deconvolution methods are summarized briefly, the classical (spatial) ADM is 

presented, the ADM method is adapted for causal filters, and difficulties associated with 

causal filtering are addressed. 

A. Approximate Deconvolution 

A lucid review of deconvolution methods can be found in Adams and Stolz2, to which 

the reader is referred for details. Here, for completeness, we review the essentials. 

Let Cj(<)  be the temporal or (one-dimensional) spatial Fourier transform of the velocity 

field uj ,  where [ = /EA or = w A  for spatial or temporal filters, respectively, and where IC 

is t,he wavenumber and w is the circular frequency. Accordingly, A is either the spatial or 

temporal filter width. The Fourier transform of a filtered field is given by 

where H is the transfer function of the filter (e.g., Fig. 1). If H f 0, the filter is said to be 

invertible, in which case 

Gj ( ( )  = H-1(()Gj(<) 

Using a standard trick from complex analysis, 

' 1  H-l = = 1 + (1 - H) + (1 - H ) 2  + ... + (1 - H)P + ... 
1-(1-H) 

14 



The geometric series on the right of Eq. 28 converges provided 11 - HI < 1. Truncating the 

series at finite order p yields an approximate inverse 8-l of the transfer function, namely 

i7-l = 1 $- (1 - H) + (1 - + ... + (1 - H)P (29) 

If were exact, then fi-’ J H = 1, and all scales would be faithfully recovered from the 

filtered fields. Exact inversion is not desirable for present purposes. Rather, one desires to 

recover the resolved scales 0 5 _< Ec exactly, but to  appropriately dissipate the energy 

in the unresolved scales Ec < /El < T. Thus, for LES or TLES, the idea! is that H * H-’ 

approximates a sharp cutoff at tc in Fourier space. 

- 

Let F represent the filter operator in physical space, and let F k  denote a k-times iterated 

filtering operation. That is; 

.. . 

By isometry between physical and Fourier space (Stolz and A d a 3 ’ ) ,  Eq. 29 can be ex- 

ploited to yield a deconvolution scheme in physical space; namely 

uj zz vj = [I + ( I  - F) + ( I  - q2 + ... + ( I  - F)P]E)  
P 

where vj is the pth-order deconvolution approximation of u j ,  and where the coefficients c k  

are readily determined to any order p by the binomial formula. Equation 31 represents 

but one of many possible approximate deconvolution techniques (See Adams and Stolz2); 

however, it is advantageous in being linear and involving only multiply filtered quantities. 

For specificity, approximate deconvolutions of orders p = 0, p = 1, and p = 2 are given 

below. 
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B. Spatial Approximate Deconvolution Method 

Stolz et al.32 present two anisotropic spatial ADhds, which are reproduced below (in 

chrent  parlance) for completeness. 

Model M2 reduces to the scale similarity model (SSM) of Bardina4 for p = 0 and accordingly 

is dubbed the generalized SSM (GSSM). Although Stolz and Adams find little difference 

between the two models in practical applications, only the latter is suited for TLES, for 

reasons addressed subsequently. 

It is well known that models of similarity type provide too little dissipation for practical 

applications to  LES. The ADMs suffer from a similar deficiency mlthout secondary regu- 

larization, a type of high-order artificial dissipation that is accomplished by introducing a 

relaxation term to the right-hand sides of each momentum equation. In physical space, the 

relaxation term is of the form 

-x(q - G I )  (35) 

where x is an arbitrary non-negative parameter, to which the solution is not very sensitive32. 

In Fourier space, the relaxation term becomes 

-x(I  - H * R-1) * (36) 

Provided ( I  - H * I?-’) is positive semi-definite, which is the case for symmetric spatial 

filters, the relaxation term is dissipative for all unresolved Fourier components. 

In the original spatial ADM, the cutoff is fixed at Cc = 2/371-. For this value, Stolz et al.32 

report the ADM to give acceptable results for p = 3 and that deconvolution orders above 

5 do not significantly improve its performance. Consequently, they fix the deconvolution 

order at p = 5. Stolz et al. also observe that secondary regularization is equivalent to 

imposing a high-order filter upon the solution. According to Stolz et al.32, the effective 

order of the secondary filter is the product of the order of the primary filter and the order of 

the deconvolution plus one. For example, for the spatial AD14 of Reference32, which exploits 

a 4th-order compact-difference filt.ering and p = 5, the secondary filter is formally of order 

24. Thus, in the classical ADM method, secondary regularization acts virtually as spectral 

filtering. 
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C. Temporal Approximate Deconvolution Method 

The proposed temporal ADM (TADM) is formally identical to the second of the -4DMs 

proposed by Stolz et al.; that is, Eq. 34, where vj is Qven by the truncated geometric series 

Eq. 31, except, of course, that now F denotes a causal filter operator. Because phase error 

introduced by temporal filtering results in the first and second terms of Eq. 33 being out of 

phase respective to  one another, only the second ADM model (Eq. 34) is viable for present 

purposes (TLES). Henceforth, we refer symbolically to the residual stress modeled by the 

temporal version of [M2)ij simply as Mij. The TADM also exploits secondary regularization 

formally identical to Eq. 35. 

Recall that Eq. 28, from which Eq. 31 is obtained, converges only for 11 - HI < 1. Fig 4 

shows this quantity for both the exponential filter of current interest and the Heaviside filter 

of Section I1 of Reference27. For the exponential filter 11 - H(()I < 1 for all 0 _< [ < 03. 

In contrast, this constraint is violated for high ( for the Heaviside filter. Consequently, the 

Heaviside filter is not a viable candidate for temporal deconvolution techniques of this type. 

Henceforth, we consider only the exponential filter (while recognizing that other filters yet 

to be examined could be superior in many respects). 

D. Adaptations of Original ADM for Temporal Deconvolution 

Straightforward adaptation of approximate deconvolution (Eq. 29) for the TADM is prob- 

lematic, chiefly due to the phase error generated by causal filtering. (These difficulties were 

partially masked in the Burger‘s flow considered previously by the authors2’, because of the 

intrinsic physical dissipation present at low Reynolds number.) For spatial filtering with a 

centered stencil, H, I?-’, and H * I?-’ are each purely real, and the operator H * I?-’, 
which is exploited for secondary regularization, is itself a low-pass filter. (See Fig. 1 of Stolz 

et aL3’) For causal filtering, each is complex; as a consequence, H * H-’ is poorly behaved. 

Figure 5 displays the moduli IHI, li??-’l, and IH * obtained from the differential fil- 

ter (Eq. 8) and p t h  order deconvolution (Eq. 31) for selected values of p .  It is clear that 

the product IH * &-’I converges as expected t.oward the identity operator as p increases; 

however, convergence is slow, and for low-order deconvolution, conventional deconvolution 

actually increases energy in unresolved scales of motion. Moreover, as stated previously, for 
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deconvolution methods with applications to LES/TLES, one wants the product H * H-’ not 

to replicate the identity operator but to have the character of a high-order low-pass filter, 

so that large scales of motion are recovered faithfully even as small scales of motion are 

attenuated . 

These difficulties can largely be circumvented by defining the approximate deconvolution 

in the standard way as 

but wjth coefficients c k  optimized to give both IH * I?-’/ and / I  - H * I?-’( the  following 

desirable properties: \ 

1. (H * H-’(O)I = 1 

2. IH*H-’(.ir)l << 1 

4. A minimal sum of absolute values of the low-order derivatives of IH * 8-’1 at the 

origin 

5. ( I  - H * a-’1 < 1 

The first constraint, imposed a s  strict equality, requires that the coefficients sum to unity; 

that is, c k  = 1. The remaining constraints are %oft” in that they can be imposed in 

optimization packages via inequalities or minimization requests. The use of soft constraints 

prevents the system from being overconstrained whenever p is small. For example, for p = 3, 

a set of coefficients found by optimization strategies is 

{Q, ~ 1 ,  ~ 2 ,  cg} = {0.99693,0.503349, -0.684561,0.184282} (38) 

Figure 6 shows the moduli /HI, lH-’l, IH * H-’l and ) I  - H * a-ll for the 3rd-order 

deconvolution coefficients immediately above and 7- = 1. Similarly Fig. 7 displays the same 

information for T = 4. Note that. in either case IH * I?-’/ has desirable low-pass properties. 

Specifically, it has a flat plateau near the origin, so that large scales are recovered faithfully, 

yet small scales of motion are highly attenuated. 

i 
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Figures. 6 and 7 also present the operator (1 - H c &-'I which is germane t o  secondary 

regularization. That the moduli lie between zero and one implies that all scales (except 

the mean) are attenuated by the secondary regularization operator, with extreme damping 

for the higher scales. The ideal shape for this operator is an inverted low-pass filter, with 

a flat plateau near the origin. Whereas, the operator is indeed inverted low-pass, it has 

non-zero slope near R = 0, an undesirable trait. Thus, the T-4DM as presently configured 

may be more sensitive to the regularization parameter x than is the ADM method, which, as 

mentioned previously, is reported to be relatively insensitive32. In summary, the coefficients 

ck presented above should be considered sub-optimal. Optimized temporal deconvolution 

will (hopefully) be the subject of a follow-on paper. 

E. Governing System 

Recall that in the current time-filtered approach, the filter is imposed in differential form 

(Eq. 8). The governing equations thereby consist of evolution equations for the filtered 

velocities coupled to a set of evolution equations for additional filtered quantities as follows: 

k=O 

a- vivj -w -(vzvj) = A at 
where the entire system is parameterized by the temporal filter-width A. As was shown in 

Pruett et aLZ7, the exact and modeled residual stresses va.nish identically as A + 0. Thus, 

as the filter width tends toward zero: the TFNSE tend smoothly toward the NSE, and TLES 

tends smoothly toward DNS. 
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The system above is presented without. secondary regularization, which a s  mentioned 

previously, is a necess? form of artificial dissipation. The imposition of secondary regular- 

ization is simple; to the right-hand side of Eq. 39 expression 35 is appended. With secondary 

regularization, there are two arbitrary parameters, the deconvolution order p and the dis- 

sipation parameter x. The filter width A is not considered arbitrary; it can and should be 

established on the basis of physical considerations, as discussed later. 

At first inspection, it appears that the computational overhead for TLES is high, both 

in terms of storage and machine operations. In addition to the original storage required for 

the four primitive variables, storage locations are required for the nine (distinct) variables 

E j  and m, as well as for the 3p variables $I, j = 2, .. ., p +  1. Thus, for p = 0 and p = 3, for 

example, the total storage for TLES is about three times and seven times, respectively, that 

of a simulation without the model. However, if TLES permits significant grid coarsening 

relative to fully resolved DNS, then the net storage savings could be significant. For example, 

for p = 3, a TLES coarsened by a factor of four in each spatial dimension and time relative 

to DNS would necessitate only 10 percent of the memory required by the DNS. TLES is 

more benign with regard to computational effort. Although the governing system has grown 

from three evolution equations to 9 + 3p  equations (u j  do not involve evolution equations), 

the additional equations are linear and involve no spatial differentiation. Hence, even for 

p = 3, the computational cost of evaluating all additional filter equations remains less than 

that of evaluating the three momentum equations. Further reductions in computational 

overhead, for example, would be possible if one were willing to settle for an isotropic residual- 

stress model. No attempt to optimize either storage or computational effort h a s  been yet 

undertaken, and it is likely that the TADM can be streamlined considerably. 

VI. REFERENCE DNS 

For several reasons, plane-channel flow affords an ideal test case against which to bench- 

mark present methodology. Channel flow involves wall effects, which are highly anisotropic, 

yet lends itself to fully spectral numerical methods, highly prized because of their accuracy 

and computational efficiency. hrloreover, in its stationary turbulent state, channel flow is 

homogeneous in two of three spatial dimensions, which reduces the data output of post- 

processing. For these reasons, channel flow has been studied e ~ t e n s i v e l y ’ ~ - ’ ~ ~ ~ ~ ,  and a highly 
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accurate data base is available (Moser et. all7). By convention, we will refer t o  this data 

base as KhlM, as it originated with the work of Kim et al.I5 As a. point of reference, Fig. 8 

presents the streamwise velocity ( U I )  profiles for the KMhl cases of Re, = 180 and Re, = 590 

vs. that of the laminar state, which is parabolic in the transverse coordinate. Here, Re, is 

the Reynolds number based upon the mean friction velocity u, (to be defined shortly). and 

channel half width. To ensure consistency of results, we have repeated the DNS of Moser et 

al. for nominal Re, = 180. 

A. Numerical Method 

The DNS is conducted by solving the NSE (that is, no residual-stress model) with the 

spectrally accurate channel-flow code TRANSIT of Gilbert and Kleiser12. The Navier-Stokes 

equations are solved in spectral space using Fourier expansions in the periodic streamwise 

(z) and transverse (y) directions and Chebyshev polynomial expansions in the wall-normal 

( z )  direction. Collocation points are equally spaced in the periodic dimensions and are 

distributed at the Gauss-Lobatto points in the wall-normal direction. Nonlinear products 

axe computed pseudospectrally by fas t  transform methods. An option exists in the code to 

run with dealiasing according to the 3/2 rule or without explicit dealiasing. Another option 

exists regarding the assumption of transverse symmetry; per-step computational efficiency 

is improved by a factor of two with symmetry enforced. Time advancement is semi-implicit 

and couples Crank-Nicolson splitting of diffusion terms with third-order low-storage Runge- 

Kutta time advancement of advection terms. A hallmark and innovation of TRANSIT 

is the enforcement of the divergence-free condition to  machine (double) precision through 

an influence-matrix technique. The computational domain is a box of dimensions L1 = 

27r/crl, L2 = 27i/az, and L3 = 2 in the streamwise, transverse, and wall-normal directions, 

respectively. TRANSIT, which performs temporal DNS, permits the computational box to 

convect at phase velocity CPH. All computations discussed herein, both DNS and TLES, 

were performed with CPH=O.O, for reasons explained subsequently. 

For some simulations, the flow is initialized to a perturbed laminar state, for which the 

streamwise velocity profile is parabolic (Fig. 8) with centerline value unity; that  is, ~ ( z )  = 

1 - z2 .  For others, to spare computational effort, the simulation is initialized to a nominally 

turbulent state. In either case, the flow is allowed to evolve through an initially transient 
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period to stationarity, at which point. statistical post-processing begins. Which of these 

initial conditions is exploited for a particular simulation will be reported in context. Without 

the enforcement of transverse symmetry, randomness in the initial conditions results in 

slightly asymmetric velocity and Reynolds-stress profiles. Rather than to enforce symmetry 

during the simulation, we prefer to allow asymmetry but to compute statistical quantities by 

averaging the upper and lower channel halves, which can be considered different realizations. 

Thus, the additional computation time per step is offset by the need for fewer time steps. 

Channel-flow simulations are non-dimensionalized in several ways. To avoid confusion, 

we draw attention to three different methods for expressing the Reynolds number. In each 

case, Re = U b / v ,  where U is the reference velocity, 6 is the channel half width (assumed 

without loss of generality to be unity), and v is the kinematic viscosity. The specifications 

differ in their reference velocities U. Relam, R e b a ,  and Re, result from using the laminar 

centerline velocity Ulm, the laminar bulk velocity Ub,, and the friction velocity u,, 

respectively, as the reference velocity, where u, = d q .  Without loss of generality, we 

presume Ulam = 1, in which case ubulk = 2/3; hence, Rebulk = 2/3Relm. The  nominal 

Re, = 180 case of Moser et al. corresponds to = 2800 (Relam = 4200). The flow 

is driven either by a streamwise pressure gradient or by requiring the mass-flow rate to 

be constant. The latter option is preferred computationally, because the flow settles more 

quijdy to stationarity (N. Adams, personal communication). Moreover, for this option, the 

mass-flow rate remains 4/3 at all times, as can be readily derived by integrating the laminar 

initial profile between -1 and +l with Viarn = 1. Knowing the mass-flow rate in advance is 

advantageous in ensuring consistency among competing scalings 

where ii, is the instantaneous friction velocity, defined as 21, = d m .  
Finally, we note that Re, is the time mean of the instantaneous quantity Re, = G76/v, 

B. DNS Test Cases 

Parameter values for the DNS test cases are summarized below in Table I. Here N,, 
A\, and hrz a.re the numbers of collocation points in the respective coordinate dimensions. 

Note that for TRANSIT, Relam = 3/2Rebulk is a fixed input parameter, but tha.t Re, is a 

time-dependent output result of the simulat.ion, whose long-time mean is Re,. 
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TABLE I: Parameter values for reference DNS cases. 

Case N, x A& x N, At a1 Q2 Rebulk Re, dealiased? 

0.5 1.5 2800 178.1 Yes KhLM 128 x 128 x 129 - 

DNSa 128 x 128 x 129 0.01 0.5 1.5 2800 176.2 Yes 

DNSb 128 x 128 x 129 0.01 0.5 1.5 2800 M 162 no 

C. Results 

To provide a well-documented reference flow against which to compare TLES results, we 

discuss the DNS results, with close attention to stationarity, homogeneity, and anisotropy, in 

addition to presentations of mean velocity profiles and mean Reynolds stresses. For brevity, 

we refer to simulations with resolution 128 x 128 x 129 as having resolution l B 3 .  

1. Homogeneity 

In temporal DNS of plane channel flow, the flow is (by definition) periodic and homoge- 

neous in the streamwise dimension. Channel flow is also periodic in the spanwise dimension; 

however, homogeneity must be established. Figure 9 displays < 7.~1 >t,z (y) at two (ar- 

bitrary) wall-normal stations: z = 0 and z = ,9988. The spanwise variations are shown 

relative to their spanwise mean values. Temporal window averages a.re obtained for A = 50 

and A = 200. As the window size increases the amplitude of the spanwise deviation about 

the mean appears to diminish, which suggests that the flow is homogeneous in y for an ap- 

propriately long time scale (somewhat longer than present computational limitations allow). 

We now exploit homogeneity to reduce the turbulent statistics to functions of one dimension 

(2) by averaging spatially over waI1-parallel planes. 

2. Stationarity 

Figure 10 displays the instantaneous a.nd mean values of two turbulence statistics of 

interest: Re, and turbulent kinetic energy k for the time interval 0 5 t 5 200. These results 

suggest that the flow is stationary; however, rigorous confirmation of stationarity would 

require a time interval considerably longer than what practical computational limitations 
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allow. 

3. Aliasing Error Control 

An initial surprise was the effect of aliasing error upon the flow statistics. Cases DNSa and 

DNSb differ only in the parameter that invokes or bypasses aliasing error control. However, 

as shown in Fig. 11, their results differ by approximately 16 in Re,. Moreover, such a 

difference in Re, induces noticeable differences in mean velocity profiles. The si@cant 

differences between the aliased and dealiased results suggest that spectral simulations at 

Re, = 180 of 1283 resolution are adequately resolved but not highly resolved. Given that 

computational limitations typically force simulations to be conducted at marginal resolution, 

it is imperative that aliasing error be controlled explicitly. 

For TRANSIT, dealiasing is performed unconventionally by increasing the resolution by 

a factor of 3/2 in each dimension prior to the transform to physical space, where nonlinear 

products are computed. Following the evaluation of nonlinear terms, resolution is returned 

to its nominal values by spectral truncation in Fourier space. This approach, which saves 

storage, is costly in another respect, namely that the per-step computational time nearly 

quadruples with explicit dealiasing. The necessity of controlling aliasing error also has 

connotations for TLES, which are addressed later. 

4. Mean Profiles 

Figure 12 compares the mean streamwise velocity and its wall-normal derivative for the 

present simulation against that of the standard of Moser et al. The streamwise velocity 

profile is presented both in standard units and in wall units, UT [= u ~ / w ]  vs. z+ [= 
zu,/v]. Whereas the presentation in standard units requires rescaling the KMM data, the 

presentation in wall units requires rescaling current results. That the results are virtually 

indistinguishable ensures not only that the two independently developed codes are giving 

consistent results, but also that the different scaling conventions hkve been interpreted in a 

mutua.lly consistent manner. 
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5. Reynolds Stresses and Anisotropy 

Figure 13 compares mean Reynolds stresses from the present simulation with the standard 

of Moser et al. for nominal Re, = 180. The agreement is very good, which validates both 

the algorithm and the parameter settings. 

The trace elements of the mean Reynolds-stress tensor afford a measure of anisotropy, 

which we take to be the ratio of twice the streamwise component to the sum of the remaining 

diagonal components, the value of whch is presented in Fig. 14 as a function of wall-normal 

coordinate. For an isotropic flow, this ratio is identically one. As the figure shows, channel 

flow is highly anisotropic near the walls, being strongly dominated there by streamwise 

velocity fluctuations. 

In Eq. (7.10) of Pope22, the author presents a shear stress balance for turbulent channel 

flow. In dimensionless form with current scalings and (without loss of generality) p = 1, the 

total shear stress T depends only on z as follows: 

where 713 =< uiui > is the (1,3) component of the Reynolds-stress tensor. Moreover, in 

Eq. (7.13), Pope shows the total stress profile to be linear. That is, the sum of viscous and 

Reynolds stresses across the channel is linear. Figure 15 confirms this relationship for case 

DNSa. 

VII. RESULTS OF TLES 

The current section consists of three subsections. In the first, three coarse-grid simulations 

of channel flow at nominal Re, = 180 are presented to establish a baseline for evaluating 

the effectiveness of TLES with the TADM, the results of which are present.ed in the second 

subsection for Re, = 180. The final subsection presents TLES results of channel flow for 

nominal Re, = 590. For each case, results are referenced to those of DNS at equivalent 

Re,, a s  discussed in the previous section. All simulations were conducted with CPH=O.O, 

a necessity, because non-zero phase velocity produces a Doppler shift in the effective filter 

frequency23 that interferes with the interpretation of some results. 
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A. Baseline Cases 

Parameter values for the baseline coarse-grid cases at nominal Re, = 180 are presented 

in Table I1 below. For all cases cy1 = 0.5, cy2 = 1.5, and Rebulk = 2800 (Relam = 4200), in 

accordance mlth the values for the KMM case of (nominal) Re, = 180. Whenever temporal 

filtering is involvee, the filter-width ratio T = 8. The reader is reminded that, whereas Rebulk 

(Relam) is an input parameter, Re, and its mean Re, are output values. The baseline cases 

are designed not to  assess the effectiveness of the TADM, but rather to establish coarse-grid 

reference simulations against which the method may be evaluated. For all baseline cases, 

the initial condition is derived from fine-grid DNS results, which are interpolated onto the 

coarser grid. As such, the initial condition induces transients and does not identically satisfy 

zero mass divergence. The latter is satisfied to machine (double) precision at the end of the 

initial time step; however, it  takes quite some time for transients to settle. The  baseline 

cases represent simulations with no model (BASEa) and simulations with a minimal model 

(BASEbc), namely, a temporal scale-similarity model (TSSM), which is the degenerate case 

of the TADM for p = 027. The TSSM is the temporal analog of the Bardina model4, which 

is known to be insufficiently dissipative. Cases BASEbc differ only in the de-aliasing option. 

In Stolz et al.32, the authors reported that, prior to the advent of the ADM, of all 

residual-stress models tested for channel flow, the most effective was no model whatsoever. 

This situation was improved substantially by the introduction of the ADM, which in our 

judgment, now represents the de facto state-of-the-art in residual-stress modeling, certainly, 

at least, for channel flow. Consequently, Table I1 also includes parameter data  for Case 

ADM-180a of Stolz et al.32, which we refer to as SAK180a. The baseline simulations and that 

of SAK represent a suite of coarse-grid simulations against which to evaluate TLES/TADM. 

More specifically, TLES/TADM should be considered a moderately effective methodology 

if it  improves substantially upon the "no model" case (BASEa), and very effective if it 

produces results roughly equivalent in accuracy to the standard (spatial) ADM method at 

commensurate resolution. 

26 



TABLE 11: Parameter values for baseline coarse-grid sirnulatons. 

Case ATz x Ny x N, At R e b d  Re, dealiased? model ( r , p )  

BASEa 32 x 32 x 33 0.04 2800 203 Ye none NA 

BASEb 32 x 32 x 33 0.04 2800 182 no TSSM (8,O) 

BAS& 32 x 32 x 33 0.04 2800 203 Y e  TSSM (8,O) 

SAK180a 32 x 32 x 33 - 2800 1 73 Y e s  ADM NA 

1. Case BASEQ: No Residual-Stress Model; with Dealiasing 

Figure 16 displays computed Re7 and turbulent kinetic energy k for Case BASEa. This is 

also referred to as the “no-model” TLES, which is essentially coarse-grid DNS with dealias- 

ing. The figure suggests that the flow is stationary by t = 100; consequently mean quantities 

presented below are computed by temporal averages taken over the interval 100 5 t 5 500, 

as shown by the length of the horizontal line in Fig. 16 and subsequent figures. As discussed 

previously, mean data are computed by also averaging over homogeneous dimensions and 

exploiting symmetry. 

Figure 17 presents the mean streamwise velocity and its wall-normal derivative vs. wall- 

normal coordinate z for Case BASEa. Although the “no model” simulation appears to 

produce a nearly correct mean velocity according to Fig. 17(a), the slope of the velocity 

profile at the wall is approximately 30 percent in error, a s  indicated in Fig. 17(b)-(c). The 

error in wall velocity gradient results in Re, = 203.2 for Case BASEa vs. Re, = 178.1 

for the DNS. Figure 17(c) presents the same information as Fig. 17(a), except expressed 

in wall units. More precisely, In Fig. 17(c), each profile is scaled according to the relevant 

calculated friction velocity u, = Re,/Relm; that is, according to Re, = 178.1 for DNS and 

Re, = 203.2 for BASEa. This convention has the effect of shifting the origin so that profiles 

match at the wall but deviate due to accumulated error away from the wall. 

Figure 18 presents the four principal components of the Reynolds-stress tensor for Case 

BASEa, relative to the Reynolds stresses of the reference DNS of KMh4. In Stolz et  al.32, 

a precedent was established for displaying trace elements of the Reynolds-stress tensor as 

fluctuation velocities R,1,l”. We adopt the same convention in Fig. 18 and subsequently. 

Rela.tive to DNS, the “no model” case over-predicts all components of ~ i j ,  with the (2,2) 
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component some 60 percent in error. Here, to compare Reynolds stresses in absolute terms, 

both the DNS and BASEa values have been scaled by the same reference velocity, namely 

ZL, of the DNS. The customary rescaling of Reynolds stresses by the actual uT (in this Case 

zc, = Re,/Rel, = 203.2/4200) gives the appearance of a better fit of the model to the 

DNS reference data, but, in our view, is misleading because it masks the effects of under- 

or over-estimating the wall stress T ~ .  

2. Case BASEb: TSSM Residual-Stress Model without Dealiasing 

Figures 19, 20, and 21 display the same information as in the previous case, but for 

Case BASEb. F i p r e  19 suggests that. the flow is somewhat transient until t x 200, but is 

essentially stationary for t > 200. Average Re, for 200 _< t 5 500 is 181.9. To approximate 

k ( t )  for Case BASEb, we have exploited Eq. 25, albeit with modeled residual stress Mii in 

lieu of Ki. 
For Fig. 21, Reynolds stresses for Case BASEb are approximated as the sum of the 

resolved-scale Reynolds stress and the mean modeled residual stress, according to &. 21 

with Mij replacing Rj. The contribution of the modeled residual stress to the total Reynolds 

stress is also pre.sented. Reynolds stresses are considerably in error near the walls, where T~~ 

is under-predicted and and 733 are over-predicted. In particular, the (2,2) component is 

over-predicted by about 60 percent. Errors in Reynolds stress induce considerable mean-flow 

error, sis shown in Fig. 20. 

From these results and the results of the DNS of the previous section, we conclude that 

dealiasing is essential. 

3. Case BASEc: TSSM Residual-Stress Model; with Dealiasing 

Figures 22, 23, and 24 display the sme information as previously, but for Case BASEc, 

for which the model is the TSSh4. In general, it appears that the p = 0 case performs no 

better and no worse than the no-model case. That all three coarse-grid baseline test cases 

predict Reynolds stresses and turbulent kinetic energy to be in excess of that of the DNS 

(Fig. 10) confirms that the baseline models a.re insufficiently dissipative as expected. 
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B. TLES with Full TADM for Nominal Re, = 180 

Here we present results of TLES with a full TADM for nominal Re, = 180; that is, 

the residual-stress "model" incorporates both high-order deconvolution and secondary reg- 

ularization. For each case the deconvolution is of order p = 3 with "tuned)i coefficients, 

as discussed in Section V. The parameters of the test cases are given in Table I11 below. 

As for the results of the previous section, cyl = 0.5 and 0 2  = 1.5 for all test cases, and 

Reb,& = 2800 (Relam = 4200), for congruence with the results of KMM at Re, = 180. 

The filter-width ratio T and regularization coefficient x are provided in the last column of 

the table. Unlike the baseline cases established above, the initial condition for all TLES 

cases at Re, = 180 is that of a randomly perturbed laminar channel Aow. 

TABLE 111: Parameter values for TLES cases. 

Case N, x Nv x N, At %bulk Re, (.>XI 
TLES 180a 32 x 32 x 33 0.04 2800 172.5 (08,O.j) 

TLES180b 32 x 32 x 33 0.04 2800 179.2 (08 ,O. 3) 

TLESl8Oc 32 x 32 x 33 0.04 2800 184.7 (08,0.2) 

TLES 180d 32 x 32 x 33 0.04 2800 162.0 (16;O.l) 

For brevity we present graphically the results of Cases TLESb, TLESc, and TLESd only 

(Figs. 25-34). All TLES results except TLESd show marked improvement relative to the 

corresponding results of the coarse-grid baseline Cases BASEa-c. In particular, the TLES 

meadow profiles very nearly match those of the DNS. Secondary regularization provides 

an adequate sink for energy at marginally resolved scales, as evidenced by decreases in 

turbulent kinetic energy k and Re, relative to the baseline cases. At present, the value of 

the regularization parameter x is arbitrary, and an appropriate value is found by numerical 

experimentation (as is also true for the conventional ADM). For fixed T ,  variations of x by a 

factor of 2.5 do not change the results dramatically, as can be seen by comparing the x = 0.5 

and x = 0.2 cases for T = 8. The insensitivity to x of the conventional (spatial) ADM is 

discussed in Stolz et As expected, the current TADM appears to be more sensitive to 

x than the ADM. Acceptable results, however, are obtained for a range of values of x. For 

Case TLESd, the level of dissipation imposed by the large filter width and the secondary 
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regularization is quite high, and it is clear that the combination is overly dissipative. 

In contrast to the ADM oP2, for which the filter width is fixed, the current TADM 

is parameterized by the filter-width ratio T .  As implied in Figs. 6 and 7, the secondary 

regularization operator becomes more dissipative with increasing 7- at roughly a linear rate. 

Improvement of the secondary regularization operator for the T.4DM will be the subject of 

follow-on research. 

Figure 28 below establishes for Case TLESc that TLES of channel flow follows a stress 

balance ana.logous to that shown in Fig. 15 for Case DNSa: except that there is an additional 

contribution to the total mean shear stress through the mean modeled residual stress. Here, 

the velocity scale is the computed (rather than nominal) value of u, = 179.2/4200. Low-level 

oscillations in the linear profile suggest, however, that 323 spatial resolution is marginal. 

In contrast to the baseline cases, all TLES cases for Re, = 180 are initialized to a lami- 

nar state subject to random perturbations. Thus, the computation proceeds from perturbed 

laminar flow, through transition, to a stationary turbulent state. Transitional flow is char- 

acterized by a strong spike in turbulent kinetic energy k, as evidenced in Figs. 25, 29, and 

32. In the initial stages of transition, the flow is primarily two-dimensional. Late-stage tran- 

sition is characterized by loss of tw-*dimensionality and the prevalence of three-dimensional 

structures. In the final breakdown stage, k “relaxes” toward a lower value characteristic of 

a fully turbulent state. 

In general, it is difficult for LES t o  properly treat transitional flow. On the one hand, 

the standard Smagorinsky model is excessively dissipative and typically inhibits transition 

altogther. On the other hand less dissipative methods tend to blow up during the spike in k 

associated with transition. That TLES, properly tuned, can allow for transition, yet settle 

into a statistically nearly-correct turbulent state, is noteworthy. 

C. TLES with Full TADM for Nominal Re, = 590 

Channel flow at nominal Re, = 180 is generally considered “barely turbulent.” Conse- 

quently, it is highly desirable to validate TLES at much higher Reynolds number, for which 

we consider nominal Re, = 590. Table IV summa.rizes the parameter values of the present 

TLES relative to those of the reference DNS of KMM for nominal Re, = 590. The table 

also presents parameter data regarding channel-flow DNS and LES conducted at the same 
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nominal Reynolds number by Stolz, Adams, and Kleiser (SAK)32. More precisely, all sim- 

ulations were conducted at Rebulk = 10935 (Relam = 16400) with box parameters a1 = 1 

and cxz = 2. For this parameter set, KMM obtained Re, = 587. Independent replication of 

the DNS by SAK, who used TRANSIT and the same spatial resolution as KMM, resulted 

in Re, = 586. Thus, very high confidence exists in the reference DNS data. 

Course-grid simulation with no model (other than explicit dealiasing) by SAK yielded 

Re, = 633, an error by about eight percent, which corresponds to an overshoot of approxi- 

mately 16 percent in the mean wall-normal derivative of the streamwise velocity at the wall. 

In constrast, SAK obtained Re, = 574 and Re, = 587 for their LES cases 590a and 590b, 

errors of just over two percent and zero percent, respectively. Cases SAK59Oa and SAK590b 

each exploit the standard (spatial) ADM and differ only in resolution. 

TABLE IV: Parameter values for TLES and reference simulations at nominal Re, = 590. 

Case 

DNS (KMM) 384 x 384 x 257 587 NA 

DNS (SAK) 384 x 384 x 257 586 NA 

LES (SAK) 48 x 64 x 65 633 none 

LES (SAK590a) 48 x 64 x 65 5 74 ADA4 

LES (SAK590b) 72 x 96 x 97 587 ADM 

TLES590 48 x 64 x 65 564 TADM 

We consider TLES at the same resolution as SAK590a with the tuned ( p  = 3) TADM 

coefficients of Ekq. 38 and parameter values At = 0.04, r = 8, and x = 0.3. Figure 35 presents 

the evolution of instantaneous Re, and k for Case TLES590, from a nominally turbulent 

initial state. Figures 36 and 37 present the mean streamwise velocity (and its wall-normal 

derivative) and the Reynolds-stress distributions, respectively, for Case TLES590. It is 

fair to say that TLES with the TADM performs nearly as well as the standard ADM at 

commensurate resolution. I t  is worth noting that, in cont.rast to the TLES cases at nominal 

Re, = 180, no numerical experimentation was performed to optimize parameters. That 

is, optimal values obtained for Re, = 180 were simply translated directly to R e ,  = 590. 

However, at this Reynolds number and with these parameter values; the simulation had 

insufficient dissipation to survive transition. Mea.n quantities are computed by avera.ging 
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over 500 5 t <: 2000, following the settling of initial transients. 

VIII. DISCUSSION 

The computational sarngs of TLES relative to DNS are significant. For example, the 323 

TLES cases at nominal Re, = 180 ran to completion in approximately one one-hundredth of 

the time required for DNS at a resolution of 1283. The speedup comes not only because of 

grid coarsening by a factor of four in each spatial dimension, but also by similar coarsening 

in time, for an aggregate workload reduction factor of 44 = 256. However, at commensurate 

resolutions, the computational overhead of TLES relative to DNS is approximately a factor 

of two, for a net gain in efficiency of roughly lo2. At Re, = 590, the computational gains 

of TLES are even more significant, as can be seen by comparing resolutions for DNS and 

TLES in Table IV. 
It is useful to establish a practical rule of thumb in regard to the choice of T (which 

effectively reduces the number of model parameters). One approach is to consider the 

ratio of the filter width A to the temporal integal scale 5, a scale characteristic of the 

turnover time of the largest eddies. Figure 38 presents selected mid-plane (z = 0) time 

traces of the velocity components from Case TLES.590. Associated with any time series is 

its autocorrelation function p(s) (Fig. 39), which in general, is given by by 

< U ( t ) U ( t  + s)  > 
p(s)  = < u(t)2 > 

Several measures of the integral scale T can be extracted from the autocorrelation function. 

The favored is 

03 

7 =  p(s)ds (42) 

provided that the integral converges. If the integral does not converge, it is sometimes 

useful to let the first zero crossing of the autocorrelation function represent 7.  Figure 39 

presents a composite autocorrelation function derived by averaging the N, * N y  individual 

autocorrelations, each associated with a time series of iij recorded at one of the mid-plane 

grid points. A time-series is displayed for El in Fig. 38. The autocorrelation functions of the 

velocities are quai-periodic in time, as is to be expected. Although strict temporal period- 

icity is destroyed by the nonlinearity of the governing system, enforced spatial periodicity 
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nonetheless induces temporal quasi-periodicity. Because of the large mean streamwise com- 

ponent, Eq. 42 fails to converge for ,El.  Consequently, we use the first zero crossings from 

the autocorrelations of 212 and i i 3  as representative of the integral scale; thus, 7 = 2. The 

temporal resolution of Case TLES590 is such that there are approximately 50 time steps 

per large-eddy turnover. Consequently, r = 8 translates to a filter width of approximately 

16 percent of the integral scale. 

This suggests a possible overarching rule of thumb. TLES should behave as M N S  when 

the filter width A is many times the integral scale (provided the SFS model is adequate at. 

large A). For A a sizable fraction of 7 ,  say 50 percent, then TLES should effectively act as 

unsteady RANS (UR.ANS). At the other extreme, for A quite small, say 1-2 percent of 7 )  

TLES is virtually equivalent to DNS. Finally, for A values that range from, say, 5-25 percent 

of T, TLES is the temporal analog of LES. 

Equivalently, the distinctions among DNS, TLES, URANS, and RANS, can be drawn 

based upon the relative contributions of the residual stress to the Reynolds stress. As dis- 

cussed in Section IV for RAM, the residual stress contributes 100 percent to the Reynolds 

stress. For DNS, the residual stress vanishes, and thus contributes nothing to the Reynolds 

stress. Between these extremes lie TLES and URANS. We would suggest that  contributions 

of 5-50 percent of the residual stress to  the Reyuvlds stress define TLES, arid contribu- 

tions greater than, say, 50 percent define URAIS. These domain boundaries are admittedly 

arbitrary and are offered simply as  talking points. 

Finally, a few comments regarding the present SFS model are in order. There are two com- 

ponents to the model: the residual-stress model and secondary regularization. Experience to 

date suggests that the temporal residual-stress model is more than adequate. Deconvolution 

orders of 2, 3, and 5 have been examined, as have a variety of deconvolution coefficients and 

filter widths. In all cases the instantaneous and mean residual stresses are well-defined, with 

mean components that have qualitatively correct profiles. In sum, temporal deconvolution 

appears to admit a family of robust residual-stress models. 

In contrast, temporal secondary regularization remains problematic, apparently due to 

the phase lag associated with causal filtering. As artificial damping (secondary regulariza- 

tion) is an essential component of the present model (or of any generalized similarity model), 

the issue requires further study and is the subject of an addendum to this report entitled 

"Optimized Temporal Deconvolution." 
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IX. CONCLUSIONS AND FUTURE WORK 

The present paper establishes temporal LES (TLES) as a viable alternative to conven- 

tional (spatial) LES. The methodology exploits a causal time-domain filter expressed in 

differential form, which yields a governing system of equations explicitly parameterized in 

terms of the temporal filter width A. Subfilter scales (SFS) are approximated by a temporal 

variant (TADM) of the approximate deconvolution model (ADM) of Stoltz and Adams31. 

The method is demonstrated by simulating plane-channel flows at Re, = 180 and Re, = 590. 

Rksults are compared against the benchmark channel-flow results of Kim et aI.l7, obtained 

by well-resolved DNS with spectral methods. 

Although there is likely considerable room for improvement in the current T_4DM, present 

results of TLES/TADM are nearly as good for channel flow as those obtained by LES/ADM 

and reported in Stolz et al.32 (for commensurate resolution). 

TLES enjoys some conceptual and practical advantages, which could make it the method 

of choice in certain applications. First, through the parameter A, TLES provides a formal 

link among DNS, URANS, and FUNS methodologies. Second, whereas spatial filtering is 

problematic for unstructured grids because of wide variations in grid size, temporal filtering, 

particularly in differential form, is independent of spatial grid resolution. Finally, present 

methodology provides direct means for comparing results of TLES with DNS or experiment, 

obviating the need for a posteriori analyses. 
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FIG. 4: Quantity (1 - HI, which determines convergence of l3q. 28 for exponential and Heaviside 

filters showing that Heaviside filter is not suitable for deconvolution. 
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data are replicated symmetrically about centerline for clarity.) 
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FIG. 10: Lower-wall ReT and turbulent kinetic energy k vs. time for Case DNSa. LEGEND: solid 

line (instantaneous); dashed line (mean). 
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FIG. 11: Effect of aliasing error upon Re7 for 1283 simulations. LEGEND: solid line (DNSa); 

dashed line (DNSb). 
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FIG. 12: Mean streamwise velocity < 24 > and its wall-normal derivative in standard and wall 

units for Case DNSa relative to KMM reference data. LEGEND: solid line (KMM); dashed line 

(DNSa). (KMM data are replicated symmetrically about centerline for clarity.) 

46 



0.6 - 

0.4 - 

0.2 - 

0 -  

-02- 

-0.4 - 

-06- 

-0.8 - 

-1 0 O S 2  

'33% 

FIG. 13: Reynolds stresses of present DNS compared with reference of Moser et al. for nomi- 

nal Re, = 180. LEGEND: solid line (KMM); dashed line (DNSa). (KMM Data a;re replicated 

symmetrically about centerline for clarity.) 
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FIG. 14: Reynolds-stress ratio as a measure of anisotropy. LEGEND: solid line (KMM); dashed 

line (DNSa). (KMM Data are replicated symmetrically about centerline for clarity.) 
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FIG: 15: Shear stress balance for Case DNSa, following Pope 22. Figure codirms theoretical result 

that sum of viscous and Reynolds stresses is linear for turbulent channel flow. LEGEND: solid line 

(total shear stress [= .r/$]); dashed line (viscous stress [= du:/dz]) ;  dashed-dotted line (Reynolds 

stress [=733/u3). 
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FIG. 17: Mean streamwise velocity profile < u1 > vs. z and its wall-normal derivative for “no 

model” coarse-grid Case BASEa relative to reference data of Moser et al., presented in both stan- 

dard and wall units. LEGEND: solid line (KMM); dashed line (BASEa); symbols (BASEa; wall 

units). 
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FIG. 18: Fluctuation velocities and Reynolds stresses vs. z for Case BASEa relative to reference 

DNS data of Moser et al.: solid line (reference DNS); dotted line (BASEa scaled absolutely by 

% = Re,-/Relm = 178/4200 of reference DNS); dashed line (BASEa scaled relatively by derived 

2 ~ ,  = Re,/Rel, = 20314200). 
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FIG. 19: Evolution of Re, and k for Case BASEb. LEGEND: solid line (instantaneous); dashed 

line (mean); dashed-dotted line (i); dotted line ( k ~ ) .  
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FIG. 20: Mean streamwise velocity profile < u1 > vs. z and its wall-normal derivative for Case 

BASEb relative to reference DNS data of Moser et al. LEGEND: solid line (KMM); dashed line 

(BASEb); symbols (BASEb, wall units). 
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FIG. 21: Fluctuation velocities and Reynolds stresses vs. z for Case BASEb relative to reference 

DNS data of Moser et al. LEGEND: solid line (reference DNS); dotted line (< Mij > +Fq: TLES); 

dashed line (contribution of < Mij >, TLES). 
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FIG. 22: Evolution of Re, and k for Case BASEc. LEGEND: solid line (instantaneous); dashed 

line (mean); dashed-dotted line ( E ) ;  dotted line (kn). 
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FIG. 23: Mean streamwise velocity profile < zll > vs. z and its wall-normal derivative for Case 

BAS& relative to reference DNS data of Moser et al. LEGEND: solid line (KMM); dashed line 

(BAS&); symbols (BAS&; wall units). 
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FIG. 24: Fluctuation velocities and Reynolds stresses vs. z for Case BAS& relative to reference 

DNS data of Moser et al. LEGEND: solid line (reference DNS); dotted line (< Mij > +Ti,> TLES); 

dashed line (contribution of < M,j >, TLES). 

FIG. 25: Evolution of Re, and k for Case TLES180b. LEGEND: solid line (instantaneous); dashed 

line (mean); dashed-dotted line (I); dotted line (kn). 
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FIG. 26: Mean streamwise velocity profile < Z L ~  > vs. z and its wall-normal derivative for Case 

TLES180b relative to reference DNS data of Moser et al. LEGEND: solid line (KMM) ; dashed line 

(TLES180b); symbols (TLES180b: wall units). 
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FIG. 27: Fluctuation velocities and Reynolds stresses vs. z for Case TLES180b relative to reference 

DNS data of Moser et d. LEGEND: solid line (reference DNS); dotted line (< Mi, > +?=ij7 TLES); 

dashed line (contribution of < Mi, >, TLES). 
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FIG. 28: Shear stress balance for Case TLES180b; following Pope 22. Figure confirms theoretical 

result that sum of viscous and Reynolds stresses is linear for turbulent channel flow. LEGEND: 

solid line (total shear stress [= 7/u:)]);  dashed line (viscous stress [= l/Re,du?/dt]); dashed- 

dotted line (resolved Reynolds stress [= T ~ ~ / u : ] ) ;  dotted line (mean modeled residual stress [= 

- < MI3 > / U 3 ) .  
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FIG. 29: Evolution of Re, and k for Case TLES180c. LEGEND: solid line (instantaneous); dashed 

line (mean); dashed-dotted line ( E ) ;  dotted line (kn). 
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FIG. 30: Mean streamwise velocity profile < u1 > 17s. z and its wall-normal derivative for Case 

TLES180c relative to reference DNS data of Moser et al. LEGEND: solid line (KMM); dashed line 

(TLES180c); symbols (TLES180q wall units). 
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FIG. 31: Fluctuation velocities and Reynolds stresses vs. z for Case TLES180c relative to reference 

DNS data of Moser et al. LEGEND: solid line (reference DNS); dotted line (< Mi, > +$j, TLES); 

dashed line (contribution of < Mi, >; TLES). 
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FIG. 32: Evolution of Re, and k for Case TLESd. LEGEND: solid line (instantaneous); dashed 

line (mean); dashed-dotted line ( E ) ;  dotted line (kn). 
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FIG. 33: Mean streamwise velocity profile < u1 > vs. z and its wall-normal derivative for Case 

TLES180d relative to reference DNS data of Moser et al. Symbols denote values a t  collocation 

points. 
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FIG. 34: Fluctuation velocities and Reynolds stresses vs. z for Case TLES180d relative to reference 

DNS data of Moser et al. LEGEND: solid line (reference DNS); dotted line (< Mij > +?ij, TLES); 

dashed line (contribution of < Mij >, TLES). 
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TLES590 relative to reference DNS data of Moser et al. LEGEND: solid line (KMM); dashed line 

(TLES590); symbols (TLES590, wall units). 
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1 Introduction 
Recently, Stolz and A d a m  (1999) revealed an approximate deconvolution model (ADM) (see 
also Adams and Stolz (2001)) for large-eddy simulation (LES), which has performed well in 
simulating flows as diverse as incompressible channel flow (Stolz et  a1 (1999a)) and supersonic 
compression-ramp flow (Stolz et al (1999b); Adams (2002)), and appears to  represent the 
stateof-the-art in residual-stress modeling. To establish a point of departure, we briefly 
describe the ADM. 

(k) denote the k-times 

successively filtered velocity. The ADM models the exact residual stress 
Let uj be the fluid velocity, overbars denote linear filtering, and Gj  

as Mij F= where 

and 

k=O 

The quantity vj, termed the deconvolved velocity, approximates uj by defiltering iij. For LES, 
the coefficients Ck are judiciously chosen so that u, faithfully restores the low wavenumber 
content of uj while attenuating high-wavenumber content. Thus, the method is useful for 

*Research supported in part by NASA Grant NAG1-02033 and by the College of Science and Mathematics, 
James Madison University. 
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LES expressly because it is approximate, not despite its being approximate. T h e  index p 
determines the order of the deconvolution. 

Suppose H ( J )  is the transfer function that defines the action of the filter in Fourier space, 
where 6 = ~ 4 ,  K. is the wavenumber, and A is the filter width, which parameterizes the filter. 
Provided the filter is invertible (H # 0) and 11 - HI < 1, the transfer function has an exact 
power-series inverse, namely 

= 1 + (1 - H) + (1 - H ) 2  + ... + (1 - H ) P  -+ ._ 
1 H-’ = 

1 - (1 - H) (4) 

Truncating the series at finite order p yields the transfer function of the approximate inverse 
G-1, namely 

H-’ = 1 + (1 - H) + (I - H)2 + ... + (1 - H)P (5) 
T i e  prodiict .E * Le-1 is the Fourier-space analog of Eq. 3. By isometry between Fourier and 
physical space, the coefficients Ck are determined simply by the b inoa id  themem (Pascal’s 
triangle); that is, for example, for p = 3, [C,, C1, C2, C3] = [4, -6,4, -11. 

-4s Stolz and Adams (1999) note, the ADM (Eq. 2) can be viewed as a generalized 
scale-similarity model (GSSM). It  is well known that similarity models are insufficiently dis- 
sipative without secondary regularization (high-order artificial viscosity) and tend to  produce 
numerical instabilities. Stabilization is accomplished in the original ADM by the addition of 
a dissipative term to the right-hand side of the momentum equations, namely 

where x is an arbitrary damping parameter, to be determined. Thus, in the ADM, decon- 
volution serves tm7o distinct purposes: 

1. Modeling of the residual stress 

2. Generation of high-order artificial viscosity 

In Fourier space, the operators associated with the two purposes above are; respectively 

If the filter is based upon a symmetric stencil, the transfer function H is purely real, as are 
H * f i - ’ a n d l - H * i ? - l .  

Let H;l denote the approximate inverse of order p .  Figure 1 presents the transfer function 
of a centered, second-order, parameterized Pad6 filter, with the nominal cutoff set at = 
n/2. Also shown are the exact inverse, the approximate inverse for p = 3, and the two 
operators of interest: H * I?-l and 1 - H * fi-’. Strictly speaking, H is not invertible; 
consequently, its exact inverse is unbounded. However, its approximate inverse is well-defined 
for all finite orders p .  

In closing this section, the point to be made is that the “Pascal” coefficients serve well 
in both capacities of the deconvolution: modeling and dissipation. The operator H * f i - l  
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manifests desirable lowpass properties: it is unity at ( = 0, is flat in the vicinity of the 
origin (which indicates that low wavenumber content is faithfully recovered by defiltering), 
and drops off rapidly to zero at high wavenumbers. Because symmetric spatial filtering 
induces no phase error, uj and ’uj are aligned in phase, and the operator 1 - H * I?-’ 
is purely real. The product of x(1 - H * 8-l) quantifies the exponential decay rate as a 
function of wavenumber. If 1 - H* I?-’ is of one sign (as it  is for the Pascal coefficients), and 
x > 0, then secondary regularization is purely dissipative, with the dissipation concentrated 
at high wavenumbers (Fig. 1). 

In the next. sections, we describe modifications necessary to adapt approximate decon- 
volution from spatial to time-domain filtering. The resulting t e q m r a l  variant of the ADM 
will be referred to as the TADM; similarly, LES with with the TADM will be termed TLES 
(t,emporal LES). 

2 Causal Time-Domain Filtering 
Consider an exponential causal filter expressed in differential form, namely 

diij - uj - fij 
d t  a 

and parameterized by the temporal filter width A. The transfer function of the continuous 
filter above is 

1 
1 + i w A  

H ( w ; A )  = 

where w is the dimensional circular frequency and i = a. 
When the filter is implemented by the discrete solution of Eq. 7 with time increments 

At, it  is natural to re-parameterize in terms of the filter-width ratio r = A/At, in which 
case the transfer function becomes 

1 
1 + irQ 

H(S1;r) = - 

where R = wAt. If the ODE is solved accurately, say, by a high-order numerical method such 
as fourth-order Runge-Kutta, then the transfer function of the fully discretized problem is 
virtually identical to Eq. 9, so that the continuous transfer function may be used for purposes 
of analysis. 

Whereas spatial filters with symmetric stencils are characterized by purely real transfer 
functions, causal filters have complex transfer functions, because they are by definition biased 
in time, as, for example, in Eq. 9. As a consequence, causal filtering produces both amplitude 
attenuation (desired) and phase error (undesired). The phase shift q5 of the exponential filter 
above is given by 
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Because of the phase error associated with causal filtering and subtle diff'erences be- 
tween the transfer functions of causal and spatial filters, both components of the ADM 
(residual-stress modeling and secondary regularization) require modification when adapted 
for time-domain filtering. This presents two possible approaches to addressing the  prob- 
lem: either a single deconvolution for both purposes, or independent deconvolutions, each 
designed for a specific purpose. Here we follow the latter path. Dual deconvolutions re- 
quire some additional storage but no appreciable additional computational effort. The  next 
two sections address deconvolution optimizations for residual-stress modeling and secondary 
regularization, respectively. 

3 Residual-Stress Model 
Formally, the resfdud-stress model of the TADM is identical to  Eq 2. Phase error is not 
problematic for the residual-stress model, because both terms of Eq. 2 have the s a x e  phase 
relationships. On the other hand, because H (see Eq. 9) is complex for causal filters, other 
problems arise for which adjustments must be made. 

Recall that  in Fourier space, the approximate inverse of H is given by 

P 
H-' = CkHk 

k=O 

Insight into the efficacy of the deconvolution can be gained through analysis of the operator 
H*&-', which is complex. Ideally, for applications to LES, the modulus IH* fi-'l is shaped 
like a spectral (sharp cutoff) low-pass filter. The closer the operator approximates this ideal, 
the better the residual-stress model is likely to be, as implied by Fig. 2, which presents /HI 
and IH * &-'I relative to the spectral ideal for a deconvolution of order p = 3. The ideal 
exactly restores low wavenumber content (resolved scales) while attenuating energy at high 
wavenumbers (unresolved scales) to zero. 

The Pascal coefficients of the 4DM are unsuitable for the TADM as shown in Fig. 3. Not 
only is energy at  moderate wavenumber not attenuated, it is amplified. Thus, an  optimized 
TADM requires that the coefficients Ck be expressly engineered to  give H * I?-' "near-ideal" 
properties. 

To illustrate the design process, consider a third-order deconvolution (i.e., p = 3). The 
parameter space consists initially of the four free parameters [C,, C,, CZ, C3]. The  require- 
ment that the coefficients sum to unity reduces the parameter space by one. Tha t  is, 

The  remaining coefficients are found by forcing to zero successive derivatives of the modulus 
of H * 

There is, however, a further consideration that involves the the zeroth coefficient, Co. 
Unlike spatial filters, such as the Pad6 filter shown previously, causal filters do not in gen- 
eral vanish identically at the Nyquist frequency (s2 = n); rather, they tend toward zero 
asmyptotically as R -+ 00, as, for example, in Eq. 9. Because all terms of except the 

which flattens its graph in the vicinity of the origin. 
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zeroth-order term contain H (see Eq. ll), H-’  -+ Co as R -+ m, and if Co # 0: H * fi-’ 
tends toward zero as l /O. For example, with Co = 1; H * I?--’ 4 H as R --t a, as seen 
in Figure 2. However, by setting Co = 0, attenuation at high frequencies increases to l /Rz,  
which is highly desirable (Fig. 4). From a physical point of view, setting Co = 0 implies that 
the deconvolved velocity is re-constructed only from fields that have been low-pass filtered 
at least twice. This ensures that the process of deconvolution is stable at high frequency. 

At this point, only Cl and C2 remain free parameters. These are determined by setting 
the second and fourth derivatives of the modulus of H * fi-’ to zero (as the odd derivatives 
are automatically zero). Algebraic constraint equations can be readily derived by use of 
computer algebra software. In general, the resulting equations are nonlinear and admit 
multiple solutions. Complex solutions, which are discarded because they cannot be readily 
implemented in physical space, occur in conjugate-symmetric pairs. The remaining real 
solutions yield approximate inverses fi-’ that share the same moduli but differ in phase. In 
particular, for p = 3, the method described herein yields two real and two complex solutions, 
from which the following set of real coefficients is selected as optimal: lO.0, &, J/T& - 

2&, 1 - d4- + 2&]. Figure 4 presents the moduli of H, I?:’, and H * H - l  for 
this coefficient set. The zero-valued derivatives of IH * I?-’/ force its graph to be as flat 
as possible a t  low frequencies, while the value of zero for Co causes the sharp drop-off at 
higher frequencies. The resulting effect is an amplitude restoration near zero, and a greater 
attenuation at high frequencies (Fig. 4). 

Obviously the method can be extended to  higher order deconvolution. 
Experience to date suggests that the temporal residual-stress model is more than ad- 

equate. Deconvolution orders of 2, 3, 4, and 5 have been examined, as have a variety of 
deconvoIution coefficients and filter widths. In all cases, the instantaneous and mean resid- 
ual stresses are well defined, with mean components that have qualitatively correct profiles. 
In sum, temporal deconvolution appears to admit a family of robust residual-stress models. 

4 Secondary Regularization 
The purpose of secondary regularization is to impose high-order artificial viscosity a.t high 
frequencies while leaving low frequencies relatively undisturbed. 

Consider the complex exponential function u(t)  = eiwt, which satisfies the complex dif- 
ferential equation of a harmonic oscillator, namely 

du 
- = iwu 
d t  

Secondary regularization functions as  a dissipative term for a harmonic oscillator. Accord- 
ingly, consider the model problem 

The additional term, the Fourier-space analog of Eq. 6, imposes exponential damping pro- 
vided 

Re[iw + X ( H  * I?’ - I.)] < 0.0 
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which is satisfied iff 
Re[x(H * if-’ - 111 < 0.0 

The exponential envelope (e.g e”)  of the damped harmonic oscillation is governed by the 
decay rate X(s2) = x * [Re(H * I?-1) - 11, which in turn is scaled by the damping parameter 
x. 

Constraint Eq. 4 is violated whenever the Pascal coefficients are used in secondary regu- 
larization in the TADM. As shown in Fig. 5, the decay rate is positive for some frequencies, 
which leads to unstable exponential growth in time. 

For a given order p ,  optimal coefficients can be found by setting derivatives of the real 
part of H * fi-’ to zero, which, once again, is readily accomplished using computer algebra 
software. For example, for p = 3, there are four coefficients, three of which are free param- 
eters. Optimal coefficients are found by forcing the second, fourth, and sixth derivatives 
of Re[H * to zero. (Odd-order derivatives are automatically zero.) Specifically, the 
optimal coefficients for third-order temporal secondary regulasization are [CO, C1, C2, C3] = [s, %, $, $1. The decay rate for this coefficient set is shown in Fig. 6 (for a x of unity). 
Similarly, an optimal set of coefficients for second-order ( p  = 2) secondary regularization is 
[Co, Cl, C2] = [T, T,;i]. Figure 6 also presents the decay rate for optimized p = 2 secondary 
deconvolution. 

15 -9  1 

5 Results 
Figures 7, 8, and 9 compare results of TLES at nominal Re, = 590 to reference channel- 
flow data  from DNS by Moser et al (1988). Parameter values for the TLES and refer- 
ence simulations are presented in Table 1. The TLES is conducted with a TADM of or- 
der p = 3 with distinct coefficient optimizations for residual-stress modeling (coefficients 

discussed in the previous two sections. The flow is initialized to a laminar state, randomly 
perturbed. Mean quantities are computed by averaging over 500 5 t 5 1500. Spatial reso- 
lution for the TLES is commensurate with that of the spatial LES of channel flow with the 
ADM by Stolz et a1 (1999a), whose results are also presented in Table 1. 

[O.O, 2.4495, -1.9159,0.4664]) and secondary regularization (coefficients [s, 35 w,z, -29 3 TI), -1 
as 

Case Nz x Ny x N, at Reh,’lk Re, model (T, x) 
KMM 384 x 384 x 257 - 10935 587 none NA 
SAK 48 x 64 x 65 - 10935 574 ADM NA 
TLES 48 x 64 x 65 0.04 10935 595 TADM (8,l.O) 

Table 1: Parameter values of channel-flow TLES at nominal Re, = 590 and reference simu- 
lations of Moser et a1 (1988) (KMM) and Stolz et a1 (1999a) (SAK). 



The present results of TLES with the TADM are highly encouraging. With optimized 
secondary regularization, the TADM is sufficiently robust to survive the enormous spike in 
turbulent kinetic energy k during transition (Fig. 7). The TADM adjusts accordingly during 
transition as indicated by the spike in ICR (the trace of the modeled residual-stress tensor 
MtJ)  during the time interval 50 5 t 5 150. The computed value of Re, = 595 deviates only 
1.3 percent from the reference value of 587, an overshoot commensurate with the undershoot 
of the results of Stolz et al (1999a) using the ADM. Meanflow profiles are quite good near 
the wall but deviate somewhat from the DNS results near center channel (Fig. 8). Reynolds- 
stress profiles agree well qualitatively and quantitatively with DNS reference profiles (Fig. 9), 
with significant contribution t o  the Reynolds stress from the mean residual stress. 

Table 2 summarizes results from several simulations of the present method (TLES) at 
nominal Re, = 180, for which, for brevity, no figures are presented. Results from a reference 
LES of Stolz et al (1999a) using the spatial ADM are also provided. All simulations were 
conducted at a spatial grid resolution of 32 x 32 x 33, whereas the reference DNS of Moser 
et a1 (1988)) for which Re, = 178.1, was conducted at resolution 128 x 128 x 129. 

The results of TLES (with optimized coefficients) at nominal Re, = 180 are somewhat 
disappointing relative to the results at nominal Re, = 590. All trial cases represent im- 
provement over the “no-model” case (TLES180a), in which both the residual-stress model 
and secondary regularization are turned off. However, computed Re, is nearly 10 percent in 
error for Case TLES180b, which has the same deconvolution coefficients as  for the  Re, = 590 
simulation presented previously. It should be noted that, although Re, = 590 represents a 
more computationally intensive calculation than Re, = 180, Re, = 180 may represent the 
more severe test of the TADM, because barely turbulent flow is in general more anisotropic 
than highly turbulent flow. Comparison of Cases TLES180bc reveals the solution to be 
relatively insensitive to the damping coefficient x, although slightly improved by higher dis- 
sipation. Because the damping coefficient is arbitrary, this is a positive result; it would be 
highly undesirable for the solution to  depend sensitively on an arbitrary value. (Note that 
the ADM also involves an arbitrary coefficient for secondary regularization, to  which the 
solution is also relatively insensitive.) 

Case TLES180d results from mixed deconvolution coefficients, where optimized third- 
order ( p  = 3) coefficients are exploited for the residual-stress model, but second-order ( p  = 2) 
optimization is used for secondary regularization. Note that both deconvolutions have the 
same number of free parameters (namely two), which in each case is used t o  force appro- 
priate second and fourth derivatives to zero at the origin. That Case TLES180d represents 
further improvement suggests that higher order deconvolution is not necessarily better with 
regard to artificial dissipation. Here we interject some speculation. So called mixed models 
of residual stress blend a scale-similarity model with a Smagorinsky-like dissipative term 
(secondary regularization) as an attempt to fm the inadequate dissipation of a stand-alone 
scale-similarity model. The result is typically overly dissipative, in our view, because the 
dissipation comes in a t  second order. Our current thinking is that the dissipative term needs 
to be of higher order than the second derivative (at which the physical viscosity is active), 
but not necessarily of very high order. 

In conclusion, the present addendum outlines the constraints that should be imposed 
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Case c2 x Re, model 
TLES 180a N/A N/A 203.0 none 
TLES180b 12.1875, -1.8125, 0.7500, -0.12501 1.0 195.4 TADM 
TLES180c [2.1875, -1.8125, 0.7500, -0.12501 2.0 193.5 TADM 

SAK180a N/A N/A 173. ADM 
TLES180d [1.8750, -1.1250, 0.2500, 0.01 1.0 189.8 TADM 

Table 2: Results for various trials at nominal Rer = 180, with order p = 3, filter- 
width ratio T- = 8, fiebulk = 2800, vector of coefficients in residual-stress model el = 
[O.O, 2.4495, -1.9159,0.4664], and vector of coefficients in secondary regularization as in- 
dicated. 

to optimize temporal deconvoiufion in the TADM for the dual purposes of residual-stress 
modeling and secondary regularization. We have focused on third-order ( p  = 3) deconvo- 
lutions, but the optimization approach is applicable to any order p .  Furthermore, we have 
experimented very little with the filter-width ratio r ,  which remains an essential parameter 
of the TADM. Consequently, present coefficients should not be considered ideal in any sense. 
In sum, TLES with the TADM appears to be a promising alternative to LES tha t  affords 
considerable opportunity for refinement. 
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Figure 1: Transfer function of second-order Pad6 filter, its exact inverse, its approximate in- 
verse, and related operators. LEGEND: H (solid), H-l (dashed), HT1 (dashed and dotted), 
H * HT1 (dotted), and 1 - H * HT1 (solid with symbols). 
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Figure 2: Transfer functions for H (dashed), fi-' (dotted), H li: I?-' (dashed and 
dotted), and spectral function (solid) for a third-order deconvolution with coefficients 
[1.0,0.559,-0.784,0.225] and r = 2 

Figure 3: Transfer functions for H (dashed), fi-' (dotted), H+fi-' (dashed and dotted), and 
spectral function (solid) for a third-order deconvolution with Pascal coefficients [4, -6,4, -11 
and r = 2. 
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Figure 4: Transfer functions for H (dashed), H - l  (dotted), H * (dashed and dot- 
ted), and a spectral function (solid) for third-order deconvolution with optimized coefficients 
[O.O, 2.4495, -1.9159,0.4664] and T = 2. 
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Figure 5: Decay rate (A) for third-order deconvolution with Pascal coefficients [4: -6: 4; -11; 
T = 2, and x = 1.0. 
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Figure 6: Decay rates (A) for third-order and second-order deconvolutions with optimized 
coefficients E2.1875, -1.8125,0.75, -0.1251 and [1.875; -1.125,0.750], respectively, T = 2, and 
x = 1.0. LEGEND: p = 3 (solid); p = 2 (dashed). 
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Figure 7: Evolution of Re, and k for Case TLES590. LEGEND: solid line (instantaneous); 
dashed line (mean); dashed-dotted line ( E ) ;  dotted line ( k ~ ) .  
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Figure 8: Mean streamwise velocity profile < 211 > vs. z and its wall-normal derivative for 
Case TLES590 relative to reference DNS data of Moser et al. LEGEND: solid line (KMM); 
dashed line (TLES590); symbols (TLES590, wall units). 
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Figure 9: Fluctuation velocities and Reynolds stresses vs. z for Case TLES590 relative 
to reference DNS data of Moser et al. LEGEND: solid line (reference DNS); dotted line 
(< Mij > +Tij, TLES); dashed line (contribution of < Mij >, TLES). 
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